DOI: 10.1002/ange.200700916

Enantioselective Organocatalytic Hydrophosphination of α,β-Unsaturated Aldehydes**

Ismail Ibrahem, Ramon Rios, Jan Vesely, Peter Hammar, Lars Eriksson, Fahmi Himo, and Armando Córdova*

Chiral phosphines are highly valuable ligands for metal-catalyzed enantioselective transformations^[1] and can be used as catalysts in organocatalytic reactions.^[2] They are generally prepared by resolution—by employing stoichiometric amounts of chiral auxiliaries or enantiopure substrates.^[3] Thus, there is an important need for the development of more efficient catalytic methods.^[4] The asymmetric hydrophosphination (AHP)^[5] of trivalent phosphine compounds with a P–H bond to electron-deficient olefins provides a direct route to useful chiral phosphine ligands containing different chemical functionalities. However, there are only a few catalytic asymmetric methods for this transformation; ^[6-8] for example, Togni and co-workers reported a highly enantioselective reaction catalyzed by a Lewis acid, ^[6] and, during

our initial studies, Melchiorre and coworkers reported an elegant AHP of nitrostyrenes catalyzed by a chiral organic base that proceeds with good enentioselectivity.^[8]

Aminocatalysis has proven to be a powerful procedure^[9]

within the field of organocatalysis^[10] for the enantioselective transformation of carbonyl compounds. In this context, iminium activation^[11a] has been successfully demonstrated in Michael-type β -functionalizations for carbon-, hydrido-, sulfur-, and oxygen nucleophiles. On the basis of this research and the importance of developing AHP reactions, we envisioned a direct route to functionalized optically active β -formyl- and γ -hydroxyphosphines and derivatives thereof by amine-catalyzed stereoselective reactions between trivalent phosphine compounds and enals [Eq. (1), gray sphere = chiral group]. However, there are inherent difficulties in this type of transformation because of the reversibility of the nucleophilic attack and competition between 1,2- and 1,4-addition to the enal (Scheme 1).

[*] I. Ibrahem, Dr. R. Rios, Dr. J. Vesely, Prof. Dr. A. Córdova

Department of Organic Chemistry

The Arrhenius Laboratory

Stockholm University

106 91 Stockholm (Sweden)

Fax: (+46) 815-4908

E-mail: acordovala@netscape.net

E-mail: acordova@organ.su.se

Prof. Dr. L. Eriksson

Department of Structural Chemistry

The Arrhenius Laboratory

Stockholm University

106 91 Stockholm (Sweden)

P. Hammar, Prof. Dr. F. Himo

Department of Theoretical Chemistry
The Royal Institute of Technology

ALBANOVA

106 91 Stockholm (Sweden)

[***] We thank Prof. Jacek Stawinski for valuable discussions. We gratefully acknowledge the Swedish National Research Council, Wenner-Gren Foundation, Magn Bergvall Foundation, and Carl Trygger Foundation for financial support.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Herein we present the highly chemo- and enantioselective organocatalytic $~\beta\text{-hydrophosphination}~$ of $~\alpha,\beta\text{-unsaturated}$ aldehydes.

Scheme 1. Difficulties encountered when attempting AHP of enals.

After extensive screening of catalysts and different suitable phosphine sources for the AHP of cinnamic aldehyde (1a), we found that diphenylphosphine (2a) had the right properties to achieve product formation. Some of the results from the screening of the reaction conditions and catalysts for the enantioselective reaction of enal 1a and 2a in CHCl₃ are shown in Table 1. [16] The corresponding β -formylphosphine 3a was reduced in situ with NaBH₄ to the air-stable alcohol derative 4a to facilitate the purification process as well as to generate a more stable product. [17]

Zuschriften

Table 1: Catalyst screen for the reaction between 1a and 2a. [a]

Entry	Catalyst	<i>T</i> [°C]	t [min]	Conv [%] ^[b]	ee [%] ^[c]
1	6	RT	60	53	0
2	7	RT	60	55	14
3	8	RT	60	59	12
4	9	RT	60	>99	38
5	10	RT	60	81	18
6	11	RT	60	>99	50
7	12	RT	60	>99	56
8	11	RT	10 ^[d]	$> 99^{[d]}$	40 ^[d]
9	11	4	20 ^[d]	$> 99^{[d]}$	83 ^[d]
10	12	4	20 ^[d]	$> 99^{[d]}$	73 ^[d]
11	11	-10	60 ^[d]	45 ^[d]	79 ^[d]

[a] Experimental conditions: A mixture of 1a (0.25 mmol) and catalyst (20 mol%) in CHCl₃ (1.0 mL) was flushed with argon. Next, 2 (0.30 mmol) was added and the reaction mixture stirred at the temperature for the time indicated. In situ reduction of 3a with NaBH₄ gave the corresponding γ -alcohol 4a. [b] Conversion into product 3a as determined by NMR analysis. [c] Determined by chiral-phase HPLC analysis. [d] 2-Fluorobenzoic acid (10 mol%) was added. TMS = trimethylsilyl.

We found that chiral amines **6–12** catalyzed the AHP of enal **1a** with high efficiency and with *ee* values ranging from 0–56% *ee*. Chiral protected diarylprolinols **7**, **11**,^[18] and **12**^[11j,g,13a,c,15a] were the most efficient catalysts under our

reaction conditions and mediated the formation of 3a with high chemoselectivity (entries 4, 6, and 7). Notably, we found that the reaction was significantly accelerated by the addition of a benzoic acid additive, which probably promoted the formation of the iminium ion. Of the benzoic acids 2-fluorobenzoic (10 mol %) gave the best results without significantly affecting the enantioselectivity (entry 8). Under these conditions, chiral amine 11 catalyzed the asymmetric formation of 3a with 83% ee and complete conversion at 4°C within 20 minutes (entry 9). Decreasing the temperature to -10 °C did not improve the enantioselectivity and reduced the efficiency of the reaction (entry 11). On the basis of these results we decided to investigate the enantioselective AHP of enals 1 with diphenylphosphine (2a) catalyzed by amine 11 and 12 under these conditions (Table 2).

The organocatalytic AHP reactions were highly chemo- and enantioselective and the corresponding formylphosphines 3 were converted in situ into the corresponding alcohols 4 or phosphine oxides 5 by in situ reduction or oxidation, respectively. For example, β-phosphine alcohols 4b-4g were isolated with 90-99% ee. The reaction was efficient and highly enantioselective for α,β -unsaturated aldehydes 1 with either aliphatic or aromatic functional groups. Moreover, the α,β-unsaturated aldehydes 1 could also be converted in a one-pot reaction into the corresponding βoxide phosphine acids (Scheme 2). For example, β-phosphine oxide carboxylic acid 13c was obtained in 65% yield and 92% ee. If desired, the phosphine oxide derivatives can be readily converted into the hydrophosphines by reduction with silanes.[19] The absolute configuration of the phosphoruscontaining compounds was 2S (R = Ar), as established by X-ray

analysis of a single crystal of the diphosphine oxide derivative **14d** (Figure 1),^[20] which was formed by decomposition of the isolated pure phosphine oxide aldehyde **3d** after more than 16 h at room temperature.

Table 2: Scope of the organocatalytic AHP. [a]

Entry	Catalyst	R	Prod.	Yield [%] ^[b]	ee [%] ^[c]
1	11	Ph	4a	85	83
2	11	$4-NO_2C_6H_4$	4 b	87	99
3	12	4-CIC ₆ H ₄	4 c	79	92
4	12	4-BrC ₆ H ₄	4 d	78	90
5	12	2-Naph	4 e	85	98
6	12	BnO	4 f	70	91
7	12	Ph O S.	4 g	72	95

[a] Experimental conditions: A mixture of $\mathbf{1}$ (0.25 mmol), 2-fluorobenzoic acid (10 mol%), and catalyst $\mathbf{11}$ or $\mathbf{12}$ (20 mol%) in CHCl₃ (1.0 mL) was flushed with argon. Next, $\mathbf{2}$ (0.30 mmol) was added and the reaction mixture stirred for 20 min at 4°C. Next, in situ reduction of $\mathbf{3}$ with NaBH₄ gave the corresponding alcohol $\mathbf{4}$. [b] Yield of isolated pure product aldehyde $\mathbf{5}$ after in situ oxidation of $\mathbf{3}$ with I₂. [c] Determined by chiral-phase HPLC analysis.

Scheme 2. One-pot asymmetric synthesis of β -phosphine oxide acid 13 c.

To shed more light on the origin of the enantioselectivity we performed density functional theory (DFT) calculations on the P-C bond-forming step. The calculations were performed using the Gaussian 03 software package^[21] and

the B3LYP functional. [22] Geometries were optimized with the 6-31G(d,p) basis set, and characterized with frequency calculations. Final energies were obtained with the larger basis set 6-311 + G-(2d,2p) and corrected for zero point effects obtained from the frequency calculations. The effect of solvation in CHCl₃ was calculated using polarizable conductor model (CPCM).[23] As a representative case for the calculations, we considered the reaction of diphenylphosphine (2a) with the iminium species formed from cinnamic aldehyde (1a) and catalyst 11

(Figure 2).^[24] The transition state leading to the S product (TS-S) was calculated to have the lowest energy. The attack takes place at the face of the E-iminium ion that is not shielded by the bulky group of the catalyst. The attack on the shielded face of the E-iminium ion (TS-R), which yields the 2R product, is 1.5 kcal mol⁻¹ higher in energy (2.9 kcal mol⁻¹ including solvation effects). Although the energy difference suggests a somewhat higher enantioselectivity than the one observed experimentally for this specific reaction, it is qualitatively in agreement with the experimental findings and supports the prediction that the bulky group of 11 shields the Re face $(R = Ar)^{[25]}$ of the E-iminium ion, which leads to

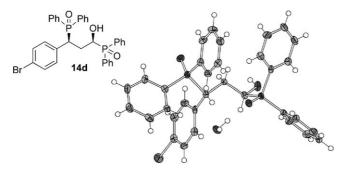


Figure 1. ORTEP picture of the crystalline di(phosphine oxide) compound 14d.

Si facial attack. The Z-iminium ion was previously found to be less stable than the *E*-iminium ion.^[14e] We have calculated that the different transition states for the phosphine attack on the Z-iminium ion have 3–5 kcal mol⁻¹ higher energies than those formed by attack on the E-iminium ion, and are not considered further here. This finding is also in accordance with previous conjugate additions catalyzed by catalysts 11 and 12.[13-15]

In summary, we have reported the unprecedented example of a highly chemo- and enantioselective organocatalytic hydrophosphination of α,β -unsaturated aldehydes. The reaction is catalyzed efficiently by simple chiral pyrrolidine derivatives and gives the corresponding phosphine derivatives

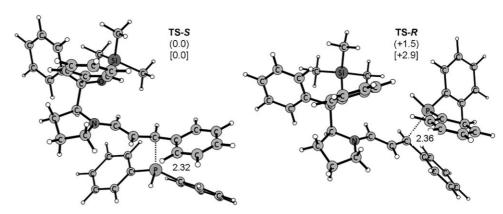


Figure 2. Optimized transition-state structures for phosphine attack on an E-iminium ion. TS-S arises from attack on the unshielded face of the iminium ion and has lower energy than when the attack is on the shielded face (TS-R). Relative energies [kcal mol⁻¹] in the gas phase (in parentheses) and solvated [in brackets] are given. Distances are in Angstroms.

in high yields and in up to 99 % ee. The synthetic utility of the novel catalytic AHP was exemplified by the one-pot asymmetric synthesis of β-phosphine oxide acids. DFT calculations showed that the lowest energy transition state led to the S product. Mechanistic studies, synthetic applications of this transformation, as well as development of other enantioselective AHP reactions based on this concept are ongoing.

Received: February 28, 2007 Published online: May 11, 2007

Keywords: aldehydes · asymmetric synthesis · conjugate addition · organocatalysis · phosphanes

- [1] a) Asymmetric Catalysis on Industrial Scale. Challenges, Approaches, and Solutions (Ed.: H.-U. Blaser, E. Schmidt), Wiley-VCH, Weinheim, 2004; b) K. V. L. Crépy, T. Imamoto, Top. Curr. Chem. 2003, 229, 1.
- [2] For reviews on the use on phosphine catalyzed reactions, see a) X. Lu, C. Zhang, Z. Xu, Acc. Chem. Res. 2001, 34, 535; b) J. L. Methot, W. R. Roush, Adv. Synth. Catal. 2004, 346, 1035.
- [3] a) B. Wiese, G. Knühl, D. Flubacher, J. W. Prieß, B. Ulriksen, K. Brödner, G. Helmchen, Eur. J. Org. Chem. 2005, 3246, and references therein; b) K. M. Pietrusiewicz, M. Zablocka, Chem. Rev. 1994, 94, 1375; c) W. Tang, X. Zhang, Chem. Rev. 2003, 103,

4593

Zuschriften

- [4] For recent examples, see a) B. Join, D. Mimieu, O. Delacroix, A.-C. Gaumont, Chem. Commun. 2006, 3249; b) C. Scriban, D. S. Glueck, J. Am. Chem. Soc. 2006, 128, 2788; c) V. S. Chan, I. C. Stewart, R. G. Bergman, F. D. Toste, J. Am. Chem. Soc. 2006, 128, 2786.
- [5] a) M. Tanaka, Top. Curr. Chem. 2004, 232, 25; b) "Hydrophosphination and related reactions": D. K. Wicht, D. S. Glueck in Catalytic Heterofunctionalizations (Eds.: A. Togni, H. Grützmacher), Wiley-VCH, Weinheim, 2001.
- [6] a) A. D. Sadow, A. Togni, J. Am. Chem. Soc. 2005, 127, 17012; b) A. D. Sadow, I. Haller, L. Fadini, A. Togni, J. Am. Chem. Soc. **2004**, *126*, 14704.
- [7] I. Kovacik, D. K. Wicht, N. S. Grewal, D. S. Glueck, C. D. Incarvito, I. A. Guzei, A. L. Rheingold, Organometallics 2000, 19, 950.
- [8] G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, A. Mazzanti, L. Sambri, P. Melchiorre, Chem. Commun. 2007, 722.
- [9] For example, see a) B. List, Chem. Commun. 2006, 819; b) M. Marigo, K. A. Jørgensen, Chem. Commun. 2006, 2001; c) D. Enders, C. Grondal, M. R. M. Hüttl, Angew. Chem. 2007, 119, 1590; Angew. Chem. Int. Ed. 2007, 46, 1570.
- [10] a) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840; Angew. Chem. Int. Ed. 2001, 40, 3726; b) R. O. Duthaler, Angew. Chem. 2003, 115, 1005; Angew. Chem. Int. Ed. 2003, 42, 975; d) P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248; Angew. Chem. Int. Ed. 2004, 43, 5138; c) A. Berkessel, H. Gröger, Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2004.
- [11] For selected examples, see a) K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 4243; b) A. B. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 2458; c) R. K. Kunz, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3240; d) N. A. Paras, D. W. C. MacMillan, J. Am. Chem. Soc. 2001, 123, 4370; e) W. S. Jen, J. J. M. Wiener, D. W. C. MacMillan, J. Am. Chem. Soc. 2000, 122, 9874; f) N. Halland, P. S. Aburell, K. A. Jørgensen, Angew. Chem. 2004, 116, 1292; Angew. Chem. Int. Ed. 2004, 43, 1272; g) S. Brandau, A. Landa, J. Franzen, M. Marigo, K. A. Jørgensen, Angew. Chem. 2006, 118, 4411; Angew. Chem. Int. Ed. 2006, 45, 4305; h) N. Halland, T. Hansen, K. A. Jørgensen, Angew. Chem. 2003, 115, 5105; Angew. Chem. Int. Ed. 2003, 42, 4955; i) N. Halland, P. S. Aburel, K. A. Jørgensen, Angew. Chem. 2003, 115, 685; Angew. Chem. Int. Ed. 2003, 42, 661; j) A. Carlone, S. Cabrera, M. Marigo, K. A. Jørgensen, Angew. Chem. 2007, 119, 1119; Angew. Chem. Int. Ed. 2007, 46, 1101, and references therein; k) H. Gotoh, R. Masui, H. Ogino, M. Shoji, Y. Hayashi, Angew. Chem. 2006, 118, 7007; Angew. Chem. Int. Ed. 2006, 45, 6853; 1) S. Hanessian, V. Pham, Org. Lett. 2000, 2, 2975.
- [12] For selected examples, see a) J. W. Yang, M. T. Hechevarria Fonseca, N. Vignola, B. List, Angew. Chem. 2005, 117, 110; Angew. Chem. Int. Ed. 2005, 44, 108; b) S. G. Guellet, J. B. Tuttle, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 32; c) S. Mayer, B. List, Angew. Chem. 2006, 118, 4299; Angew. Chem. Int. Ed. 2006, 45, 4193; d) R. M. Wilson, W. S. Jen, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 11616; e) G.-L. Zhao, A. Córdova, Tetrahedron Lett. 2006, 47, 7417.
- [13] For selected examples, see a) M. Marigo, T. Schulte, J. Franzen, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 15710; b) W. Wang, H. Li, J. Wang, L. Zu, J. Am. Chem. Soc. 2006, 128, 10354;

- c) R. Rios, H. Sunden, I. Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Tetrahedron Lett. 2006, 47, 8547; d) S. Brandau, E. Maerten, K. A. Jørgensen, J. Am. Chem. Soc. 2006, 128, 14986.
- [14] For selected references, see a) Y. K. Chen, M. Yoshida, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 9328; b) I. Ibrahem, R. Rios, J. Vesely, G.-L. Zhao, A. Córdova, Chem. Commun. 2006, 849; c) H. Sundén, R. Rios, I. Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Adv. Synth. Cat. 2007, DOI: 10.1002/ adsc.200600513; d) J. Vesely, I. Ibrahem, R. Rios, G.-L. Zhao, Y. Xu, A. Córdova, Tetrahedron Lett. 2007, 48, 2193; e) P. Dinér, M. Nielsen, M. Marigo, K. A. Jørgensen, Angew. Chem. 2007, 119, 2029-2033; Angew. Chem. Int. Ed. 2007, 46, 1983-1987; f) J. Vesely, I. Ibrahem, G.-L. Zhao, R. Rios, A. Córdova, Angew. Chem. 2007, 119, 792; Angew. Chem. Int. Ed. 2007, 46, 778.
- [15] For selected references, see a) S. Bertelsen, P. Dinér, R. L. Johansen, K. A. Jørgensen, J. Am. Chem. Soc. 2007, 129, 1536; b) T. Govender, L. Hojabri, F. M. Moghaddam, P. I. Arvidsson, Tetrahedron: Asymmetry 2006, 17, 1763; c) H. Sundén, I. Ibrahem, G.-L. Zhao, L. Eriksson, A. Córdova, Chem. Eur. J. 2007, 13, 574.
- [16] Chiral amine 11 catalyzed the AHP in CH₃CN, THF, toluene, and DMF with similar enantioselectivity (26-45% ee), but with lower efficiency.
- [17] Deprotection of the phosphine borane can be readily accomplished, see Ref. [3a] and a) J. McNulty, Y. Zhou, Tetrahedron Lett. 2004, 45, 407; b) H. Brisset, Y. Gourdel, P. Pellon, M. Le Corre, Tetrahedron Lett. 1993, 34, 4523.
- [18] a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. 2005, 117, 804; Angew. Chem. Int. Ed. 2005, 44, 794; b) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. 2005, 117, 4284; Angew. Chem. Int. Ed. 2005, 44, 4212.
- [19] a) R. Shintani, W.-L. Duan, T. Nagano, A. Okada, T. Hayashi, Angew. Chem. 2005, 117, 4687; Angew. Chem. Int. Ed. 2005, 44, 4611, and references therein; b) K. Vandyck, B. Matthys, M. Willen, K. Robeyns, L. Van Meervelt, J. van der Eycken, Org. Lett. 2006, 8, 363.
- [20] CCDC-637922 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data request/cif.
- [21] Gaussian 03, Revision D.01, M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2004.
- [22] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; b) A. D. Becke, Phys. Rev. A 1988, 38, 3098; c) A. D. Becke, J. Chem. Phys. 1992, 96, 2155; d) A. D. Becke, J. Chem. Phys. 1992, 97, 9173; e) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [23] a) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995; b) M. Cossi, N. Rega, G. Scalmani, and V. Barone, J. Comput. Chem. 2003, 24, 669.
- [24] For a seminal example of DFT calculations on the concept of iminium activation, see C. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong, K. N. Houk, Acc. Chem. Res. 2004, 37, 558.
- [25] In the case of enals with an aliphatic R group, this is the Si face; see also A. Carlone, G. Bartoli, M. Bosco, L. Sambri, P. 2007, Chem. DOI: 10.1002/ Melchiorre. Angew. ange.200700754; Angew. Chem. Int. Ed. 2007, DOI: 10.1002/ anie.200700754.

4594